Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
American Journal of Cancer Research ; 11(10):4994-5005, 2021.
Article in English | EMBASE | ID: covidwho-1498709

ABSTRACT

SARS-CoV-2 exploits the host cellular machinery for virus replication leading to the acute syndrome of coronavirus disease 2019 (COVID-19). Growing evidence suggests SARS-CoV-2 also exacerbates many chronic diseases, including cancers. As mutations on the spike protein (S) emerged as dominant variants that reduce vaccine efficacy, little is known about the relation between SARS-CoV-2 virus variants and cancers. Compared to the SARS-CoV-2 wild-type, the Gamma variant contains two additional NXT/S glycosylation motifs on the S protein. The hyperglycosylated S of Gamma variant is more stable, resulting in more significant epithelial-mesenchymal transition (EMT) potential. SARS-CoV-2 infection promoted NF-κB signaling activation and p65 nuclear translocation, inducing Snail expression. Pharmacologic inhibition of NF-κB activity by nature food compound, I3C suppressed viral replication and Gamma variant-mediated breast cancer metastasis, indicating that NF-κB inhibition can reduce chronic disease in COVID-19 patients. Our study revealed that the Gamma variant of SARS-CoV-2 activates NF-κB and, in turn, triggers the pro-survival function for cancer progression.

2.
American Journal of Cancer Research ; 11(5):2278-2290, 2021.
Article in English | EMBASE | ID: covidwho-1250384

ABSTRACT

The engagement of human angiotensin-converting enzyme 2 (hACE2) and SARS-CoV-2 spike protein facilitate virus spread. Thus far, ACE2 and TMPRSS2 expression is correlated with the epithelial-mesenchymal transition (EMT) gene signature in lung cancer. However, the mechanism for SARS-CoV-2-induced EMT has not been thoroughly explored. Here, we showed that SARS-CoV-2 induces EMT phenotypic change and stemness in breast cancer cell model and subsequently identified Snail as a modulator for this regulation. The in-depth analysis identifies the spike protein (S), but not envelope (E), nucleocapsid (N), or membrane protein (M), of SARS-CoV-2 induces EMT marker changes. Suppression of Snail expression in these cells abrogates S protein-induced invasion, migration, stemness, and lung metastasis, suggesting that Snail is required for SARS-CoV-2-mediated aggressive phenotype in cancer. This study reveals an important oncogenic role of SARS-CoV-2 in triggering breast cancer metastasis through Snail upregulation.

3.
Open Forum Infectious Diseases ; 7(SUPPL 1):S325, 2020.
Article in English | EMBASE | ID: covidwho-1185880

ABSTRACT

Background: The coronavirus-19-disease (COVID-19) pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread to >200 countries and surpassed 7 million cases. There is a broad range of COVID-19 illness, ranging from milder disease to a rapidly progressive respiratory disease and ARDS. The causes of this different clinical course and the drivers for severe disease are currently unknown. A fulminant increase of pro-inflammatory cytokines is thought to play a role in causing a rapid disease evolution, however the immune correlates of severe COVID-19 remain unclear. Methods: To gain insight into relationship between immune responses and disease severity we built a longitudinal cohort of 40 adult patients with known COVID- 19. Samples were collected at diagnosis and every 7 days until hospital discharge or death. As controls we also included a group of convalescent patients, and subjects who tested negative for COVID-19 by PCR. Clinical and laboratory data and were also collected. Multicolor flow cytometry was used to determine the presence and phenotype of B, T and natural killer (NK) cells. We also identified specific sub-populations (Tfh, activated/cytotoxic CD8 and NK) and assessed lymphoid exhaustion of different cell types such as naïve, memory T cells, or NK over time. Anti-Sars-CoV2 IgG and IgM antibody were detected using lateral flow method. Results: We found that the absolute number of lymphocytes and monocytes was decreased starting at diagnosis and correlated with disease severity. Disease severity correlated with decreased NK and T cell. In severe COVID-19 cases, NK cell populations were strongly decreased over time in intubated patients while they recovered in patients who improved and were discharged. CD8+ were also decreased at disease onset and seemed to correlate with disease severity. A high percentage of CD4+ and CD8+ T cells showed an exhausted phenotype. All patients tested at admission had IgM antibody responses irrespective of the course of the disease. Further analyses are ongoing. Conclusion: The characterization and role of the immune responses in COVID- 19 evolution is still under investigation. Further characterization of viral and immune factors will help in identifying subjects at high risk of severe disease and targets for intervention.

SELECTION OF CITATIONS
SEARCH DETAIL